

Institute of Energy and Mechanical Engineering named after A.Burkitbayev Department of "Technological machines and equipment"

EDUCATIONAL PROGRAM 6B06108 "Digital monitoring of machines and equipment"

Code and classification of the 6B06 «Information and communication

field of education technologies»

Code and classification of 6B061 «Information and communication

training directions technologies»

Group of educational programs B057 «Information Technology»

Level based on NQF 6 Level based on IQF 6

Study period 4 years Amount of credits 240

Educational program 6B06108 "Digital monitoring of machines and equipment" was approved at the meeting of K.I. Satbayev KazNRTU Academic Council Minutes # 12 dated «22» April 2024

was reviewed and recommended for approval at the meeting of K.I. Satbayev KazNRTU Educational and Methodological Council
Minutes # 6 dated «19» April 2024

Educational program 6B06108 "Digital monitoring of machines and equipment" was developed by Academic committee based on direction 6B061 «Information and communication technologies»

Full name	Academic degree / academic title	Position	Place of work	Signature
Chairperson of A	cademic Committee:			
Yelemessov Kassym	Candidate of Technical Sciences, Professor	Director of the Institute of Energy and Mechanical Engineering	KazNRTU named after K.I. Satbayev	611
Teaching staff:				
Kaliev Bakytzhan	Candidate of Technical Sciences, Associate Professor	Head of the department "Technological machines and equipment"	KazNRTU named after K.I. Satbayev	Domy-
Bortebayev Saiyn	Candidate of Technical Sciences, Associate Professor	Associate Professor	KazNRTU named after K.I. Satbayev	M
Employers:			Arrama i marama an i wa	1
Shakenov Aman	PhD	Chief Executive Officer	Borusan Cat Kazakhstan LLP	ANS
Students	24 11 10 2 10 2			/
Tynyshtyk Erasyl		4th year student	KazNRTU named after K.I. Satbayev	Epaf

Table of contents

	List of abbreviations and designations	4
1.	Description of educational program	5
2.	Purpose and objectives of educational program	6
3.	Requirements for evaluating the learning outcomes of the	7
	educational program	
4.	Passport of the educational program	9
4.1.	General information	9
4.2.	Relationship between the achievability of the formed learning	12
	outcomes according to educational program and academic	
	disciplines	
5.	Curriculum of the educational program	34

List of abbreviations and designations

NCJS KazNRTU named after K. I. Satbayev– NCJS «KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after K.I. SATBAYEV»;

SOSE – State obligatory standard of education of the Republic of Kazakhstan;

EP – educational program;

IWS – independent work of a student (student, undergraduate, doctoral student);

IWST – independent work of a student with a teacher (independent work of a student (undergraduate, doctoral student) with a teacher);

WC – working curriculum;

UC – university component;

CC – component of choice;

NQF – National Qualifications Framework; S

QF – Sectoral Qualifications Framework;

LO – learning outcomes;

KC – key competencies

SDGs – Sustainable Development Goals

1. Description of educational program

The field of professional activity of the bachelor of the educational program 6B06108 "Digital monitoring of machines and equipment" includes:

- sections of science and technology that contain a set of tools, techniques, methods and methods of human activity aimed at creating competitive mechanical engineering products and based on the use of modern methods and tools for design, calculation, mathematical, physical and computer modeling;
- organization and execution of works on creation, installation, commissioning, maintenance, operation, diagnostics and repair of technological machines and equipment, development of technological processes for the production of parts and assemblies;
- preparing graduates for production and technological activities related to the process of using software products aimed at meeting expectations and requirements for determining the reliability of machines and equipment, for organizational and management activities related to the maintenance of software products of the digital diagnostics class and technical condition management through information systems, data analysis.

The objects of professional activity of the bachelor are:

- technological machines and equipment of various complexes;
- technological equipment and means of mechanization and automation of technological processes;
- production technological processes, their development and development of new technologies;
 - installation and repair of technological machines and equipment;
- means of information, metrological, diagnostic and management support of technological systems to achieve the quality of manufactured products;
 - means of testing and quality control of technological machines and equipment;
 - technological processes of assembling metal structures;
- methods of data analysis to determine the technical condition and forecast the reliability of machines and equipment;
- normative and technical documentation, systems of standardization and certification, methods and means of testing and quality control of products.

Types of professional activity are:

- experimental and research activities;
- calculation and design and analytical work;
- production and technological infrastructure;
- service and maintenance;
- installation and adjustment;
- organizational and managerial information.

The bachelor's professional activity subjects are:

- technological machines and equipment; power equipment;
- machine drive systems;
- traffic management systems;
- operator's life support systems;

- structural and operational materials;
- equipment for manufacturing, testing and recycling of technological machines;
- equipment for maintenance and repair of technological machines;
- control and measuring devices for the manufacture and operation of machines;
- modern tools for extracting and processing large amounts of data in the field of technical condition of machines and equipment;
 - equipment for automating machine work processes;
 - machine design equipment

2. Purpose and objectives of educational program

The purpose of the OP: The goal of the educational program is to train highly qualified and competitive specialists competent in digital monitoring, operation, and predictive maintenance systems for technological equipment in the mining, metallurgy, and oil and gas industries. The program emphasizes the implementation of innovative digital solutions for sustainable industrialization, improving equipment energy efficiency, and optimizing production processes in line with responsible consumption and production principles. Additionally, it is crucial to develop students' competencies in designing and implementing technologies aimed at reducing the carbon footprint and enhancing environmental safety. Furthermore, the educational program incorporates inclusive approaches to ensure equal access to education for all student categories, including individuals with disabilities.

OP tasks:

- studying the cycle of general education disciplines to ensure social and humanitarian education based on the laws of socio-economic development of society, history, modern information technologies, the state language, foreign and Russian languages;
- study of the cycle of basic disciplines that provide knowledge of natural, general technical and economic disciplines as the basis of professional education;
- the cycle of basic disciplines is aimed at studying the main theoretical aspects of the reliability of technological machines, theoretical and practical methods, areas of human activity based on the creation of competitive technological machines and modern digital design methods and tools, predictive maintenance systems, mathematical, physical and computer modeling of technological processes;
- study of disciplines that form the skills of planning and organizing research work, designing reliable technologies and devices;
- Familiarization with enterprise technologies and equipment at various stages of practical training.
- Mastering laboratory research skills, technological calculations, equipment selection and design using modern computer technologies and software.
- -Training in the principles of digital transformation of industrial processes, including data analysis and the application of artificial intelligence in equipment monitoring (SDG 9).

- Developing competencies in energy-efficient technologies aimed at reducing resource consumption and harmful emissions (SDG 12).
- -Forming skills for predicting and preventing equipment failures, considering economic and environmental efficiency (SDG 9, 12).
- Preparing specialists capable of developing solutions to extend equipment lifespan and reduce industrial waste (SDG 12).
- Integrating principles of environmentally responsible design and operation of industrial systems into the educational process (SDG 7, 12, 13).
- Ensuring inclusive education through the adaptation of learning materials, digital technologies, and teaching methods for students with special educational needs (SDG 4, 10).

3. Requirements for evaluating the learning outcomes of an educational program

The scope of the bachelor's degree program is 240 credits, regardless of the form of study, the educational technologies used, the implementation of the bachelor's degree program using a network form, the implementation of the bachelor's degree program according to an individual curriculum, including accelerated learning.

Descriptors of the level and scope of knowledge, skills, and competencies

- A knowledge and understanding:
- A1 Ability to logically represent the acquired knowledge and understanding of systemic relationships within disciplines, as well as interdisciplinary relationships in modern science.
- A2-Knowledge of approaches and methods of critical analysis, the ability to use them practically in relation to various forms and processes of production.
- A3-perform basic calculations of the main parameters of technological machines, justify their choice depending on the production levels.
 - B-Applying knowledge and understanding
- B1-Independent development and promotion of various options for solving professional problems using theoretical and practical knowledge
- B2-put forward hypotheses for acquiring new knowledge necessary for daily professional activities and continuing education
- B3 on the basis of basic knowledge, be able to navigate adequately in various situations
 - C forming judgments
- C1 on the basis of knowledge about economic patterns formation of hypotheses, forecasting and planning of economic activity of the enterprise.
- C2 be able to work in a team, correctly defend your point of view, and offer new solutions.
- CC3 skills of daily acquisition of new knowledge necessary for professional activity.
 - D personal abilities

D1 - compliance with the standard of business ethics, possession of ethical and moral standards of behavior.

D2-ability to find a compromise, correlate your opinion with the opinion of the team D3-know social and ethical values based on public opinion, traditions, customs, and social norms and be able to navigate them in their professional activities.

Completion competencies

	General Cultural competencies (CA)
OK 1	Ability to communicate in oral and written forms in the state, Russian and foreign languages to solve problems of interpersonal and intercultural interaction
OK 2	Understanding and practical use of healthy lifestyle standards, including prevention issues, the ability to use physical culture to optimize performance
OK 3	Ability to analyze the main stages and patterns of historical development of society for the formation of civil
OK 4	Ability to use the basics of philosophical knowledge to form a worldview position
OK 5	Ability to critically use the methods of modern science in practical activities
OK 6	Awareness of the need and acquisition of the ability to independently learn and improve their skills throughout their working life
OK 7	Knowledge and understanding of professional ethical standards, proficiency in professional communication techniques
OK 8	Ability to work in a team tolerant perception of social, ethnic, confessional and cultural differences
OK 9	Ability to use the basics of economic knowledge in various fields of activity
	General Professional competencies (GIC)
OPK-	Ability to acquire new knowledge with a high degree of independence using modern
1	educational and information technologies
OPK- 2	Possession of computer skills sufficient for professional activity with basic programming
OPK-3	Knowledge of the main methods, methods and means of obtaining, storing, processing information, the ability to use modern technical means and methods for solving communication problems. information technologies using traditional information carriers, distributed knowledge bases, as well as information in global computer networks
OPK- 4	Understanding of the essence and significance of information in the development of modern society, the ability to receive and process information from various sources, the willingness to interpret, structure and formalize information in a form accessible to others
OPK- 5	Ability to solve standard problems professional activity based on information and bibliographic culture with the use of information and communication technologies and taking into account the basic requirements of information security
	Professional competencies (PC)
PC 1	Ability to systematically study scientific and technical information, domestic and foreign experience in the relevant training profile
PC 2	Ability to take part in the preparation of scientific reports on the completed task and implement the results of research and development in the field of technological machines and equipment
PC 3	Ability to participate in work on innovative projects using basic research methods

PC 4	Ability to model technical objects and technological processes using standard packages and
	computer-aided design tools, willingness to conduct experiments using specified methods
	with processing and analysis
PC 5	Possession of approaches and methods of critical analysis, the ability to use in practice with
	regard to various forms and processes of technological processes of
SC 6	the Ability to learn a new technique, technological and technical documentation make
	adjustments with respect to operating conditions
7 PC	the Ability to participate in work on the calculation and design of details and units of
	technological machines in accordance with the technical tasks and use the standard tools of
	design automation
PC 8	Ability to conduct patent research to ensure the novelty of the new design solutions and their
	patentability and the identification of indicators of technical level of engineered products
PC 9	Ability to explore and optimize the modes of operation of technological machines during
	their operation
PC 10	the Ability to pre-technical-economic justification of design solutions
PC 11	the Ability to design technical equipment jobs with accommodation of technological
	equipment, the ability to learn the input equipment
PC 12	the Ability to participate in work on fine-tuning and development of technological processes
	during the preparation of the production of a new product, to check the quality of the
	installation and commissioning testing and commissioning of new types of products,
	components and parts manufactured products
PC 13	the Ability to check the technical condition and residual life of process equipment, arrange a
	routine inspection and maintenance of technological machines and equipment
PC 14	the Ability to carry out activities for the prevention of occupational accidents and
	occupational diseases, to monitor compliance with environmental safety of the operations
PC 15	the Ability to choose the main and auxiliary materials, methods of implementation of
	technological processes, to apply advanced methods of operation of technological equipment
DC 16	to Wield the main methods of coloulation of nonemators of technological agriculture the
PC 16	to Wield the main methods of calculation of parameters of technological equipment, the
	method of their selection on the directories and catalogs.

4. Passport of educational program

4.1. General information

No	Field name		Comments
1	Code and classification of	the field of	6B06 «Information and communication technologies»
	education		
2		of training	6B061 « Information and communication technologies»
	directions		D055 X 0
3	Educational program group		B057 « Information Technology»
4	Educational program name		6B06108 "Digital monitoring of machines and equipment"
	Short description of program	educational	Educational program 6B06108 "Digital monitoring of machines and equipment" is aimed at preparing graduates for production and technological activities related to the process of using software products aimed at meeting the expectations and requirements for determining the reliability of machines and equipment, for organizational and management activities related to maintenance software products of the digital diagnostics class and technical condition management through information
6	Purpose of EP		systems and data analysis. Training of highly qualified and competitive specialists competent in the field of digital monitoring and predictive maintenance systems for process equipment in the mining, metallurgical and oil and gas industries. Development of personal qualities in students, formation of general cultural and professional competencies
7	Type of EP		Innovative
8	The level based on NQF		6
9	The level based on IQF		6
10	Distinctive features of EP		no
11	List of competencies of	educational	KK1. Communicativeness
	program		KK2 Basic literacy in natural science disciplines
			KK3. General engineering competencies
			KK4.Professional competencies
			KK5. Engineering-computer competencies
			KK6 Engineering-work competencies
			KK7. Socio-economic competences
12	Learning outcomes of		KK8. Special-professional competences
12	Learning outcomes of program		EO1: Apply the basic patterns and forms of regulation of social behavior, human and civil rights and freedoms when developing social projects, demonstrating respect for people, tolerance for another culture, and readiness to maintain partnerships. EO2: Demonstrate knowledge of sections of mathematics, physics and other natural sciences and apply them to solve engineering problems in the field of service maintenance of machines and equipment. EO3: Apply knowledge of economic laws, occupational

		development, and a culture of academic integrity at a
		professional level.
		EO4: Knows the basic methods, ways, and means of
		obtaining, storing, and processing information; knows
		how to use modern technical means and information
		technologies to solve communication tasks using
		traditional information carriers, distributed knowledge
		bases, and information in global computer networks.
		EO5: Use digital technologies for predictive analysis and
		optimization of equipment operation, taking into account
		the principles of sustainable development (SDGs 9, 12). EO6: Demonstrates an understanding of the fundamentals
		of programming, software creation, algorithm and data
		structure development, and object-oriented programming.
		EO7: Ensuring inclusive education through the adaptation
		of learning materials, digital technologies, and teaching
		methods for students with special educational needs (SDG)
		4, 10).
		EO8: Designs and creates software, web applications,
		mobile applications using the UML language, modern
		development tools, libraries, templates and Frameworks
		EO9: Possess programming skills in high-level languages,
		microcontroller programming tools and languages,
		software for modeling and researching process control
		systems.
		EO10: Possess methods of information processing and
		synthesis of automation systems, methods of designing and programming data management systems. Use the
		functionality of Scada systems in practice.
		EO11: Apply energy-saving and resource-saving methods
		in technical systems and processes (SDG 7, 12).
		EO12: Master tools for assessing the carbon footprint of
		technological processes and develop strategies for its
		reduction (SDG 12, 13).
		EO13: Analyze and model industrial equipment operation
		processes considering environmental safety requirements
		(SDG 9, 12).
		EO14: Develop and implement IoT and digital twin
		technologies to enhance the reliability and efficiency of
10		technical systems (SDG 9).
_	Education form	full
	Period of training Amount of credits	4 years 240
	Amount of credits Languages of instruction	Russian
	Academic degree awarded	Bachelor of Engineering and Technology
	Developer(s) and authors:	Academic Affairs Committee
10 L	Developer(s) and additions.	Academic Arrans Committee

4.2. Relationship between the achievability of the formed learning outcomes based on educational program and academic disciplines

	Discipline name Short description of discipline Amount Generated learning outcomes (codes)																
No	•				DO 4	PO					PO 8			PO	PO	PO	PO
			credits	PO I	PO 2	3	4	5	6	7	PO 8	9	10	11	12	13	14
		Cycle of ger	neral edu	cation	n disci	iplin	es										
		Rec	quired co	mpon	ent												
		English is a discipline of the	5	v													
		general education cycle. After															
		determining the level (according to															
		the results of diagnostic testing or															
		IELTS results), students are divided															
1	Foreign language	into groups and disciplines. The															
		name of the discipline corresponds															
		to the level of English proficiency.															
		When moving from one level to															
		another, the prerequisites and post-															
		prerequisites of the disciplines															
		In this course author considers	5	v													
		socio-political, socio-cultural															
		spheres of communication and															
		functional styles of the modern															
		kazakh (russian) language. The															
		course covers the specifics of the															
2	Kazakh (russian)	scientific style to develop and															
2	language	activate professional															
		communication skills and abilities															
		of students. Also it allows students															
		to leavn the basics of scientific															
		style practically and develop the															
		ability of production structural and															
		semantic text analysis															
3	Information and	The aim of the course is to gain	5	V													
3	communication	theoretical knowledge in															

	technology	information processing, the latest									
		information technologies, local and									
		global networks, the methods of									
		information protection; Getting the									
		right use of text editor editors and									
		tabulators; creation of base and									
		different categories of applications									
		The purpose of the discipline is to	5	V							
		provide objective historical									
		knowledge about the main stages of									
		the history of Kazakhstan from									
		ancient times to the present day;									
		introduce students to the problems									
		of the formation and development									
1	III' 4 CIZ 11 4	of statehood and historical and									
4	History of Kazakhstan	cultural processes; contribute to the									
		formation of humanistic values and									
		patriotic feelings in the student;									
		teach the student to use the									
		acquired historical knowledge in									
		educational, professional and									
		everyday life; evaluate the role of									
		Kazakhstan in world history									
		The purpose of the discipline is to	5	V							
		teach students the theoretical									
		foundations of philosophy as a way									
		of knowing and spiritually									
		mastering the world; developing									
5	Philosophy	their interest in fundamental									
		knowledge, stimulating the need for									
		philosophical assessments of									
		historical events and facts of									
		reality, assimilating the idea of the									
		unity of the world historical and									

		cultural process while recognizing the diversity of their skills in applying philosophical and general scientific methods in professional activities								
6	Module of socio-political knowledge (sociology, political science)	The objectives of the disciplines are to provide students with explanations on the sociological analysis of society, about social communities and personality, factors and patterns of social development, forms of interaction, types and directions of social processes, forms of regulation of social behavior, as well as primary political knowledge that will serve as a theoretical basis for understanding social -political processes, for the formation of political culture, development of a personal position and a clearer understanding of the extent of one's responsibility; help to master the political, legal, moral, ethical and socio-cultural norms necessary to act in the interests of society, form personal responsibility and achieve personal success		V	V					
7	Module of socio-political knowledge (cultural studies, psychology)	The purpose of the disciplines is to study the real processes of cultural creative activity of people who create material and spiritual values, identify the main trends and patterns of cultural development,	5	v	v					

		-											
		changes in cultural eras, methods and styles, their role in the											
		formation of man and the											
		development of society, as well as											
		master psychological knowledge											
		for the effective organization of											
		interpersonal interaction, social											
		adaptation in the field of their											
		professional activities											
		Cycle of ger	neral edu	cation	ı disci	plin	es	!					
		·	mponent			•							
		Purpose: to increase the public and		v		V							
		individual legal awareness and											
		legal culture of students, as well as											
		the formation of a knowledge											
		system and a civic position on											
	Fundamentals of anti-	combating corruption as an											
8	corruption culture and	antisocial phenomenon.											
0	law	Contents: improvement of socio-											
	1aw	economic relations of the Kazakh											
		society, psychological features of											
		corrupt behavior, formation of an											
		anti-corruption culture, legal											
		responsibility for acts of corruption											
		in various fields											
		Purpose: To develop basic	5	V		V							
		knowledge of economic processes											
		and skills in entrepreneurial											
	Fundamentals of	activities.											
9	economics and	Content: The course aims to											
	entrepreneurship	develop skills in analyzing											
		economic concepts such as supply											
		and demand, and market											
		equilibrium. It includes the basics											

		of creating and managing a									
		business, developing business									
		plans, risk assessment, and strategic									
		decision-making									
		Purpose: to form a systematic	5	V	•	v					
		understanding of the methodology									
		of scientific cognition among									
		students; to develop scientific									
		thinking skills; to form experience									
		in organizing and conducting									
		scientific research; to develop a									
		competence-based approach to the									
	Fundamentals of	use of methods and rules for									
10	scientific research	conducting research in the field of									
	methods	mechanical engineering, related									
	memous	processes and their technologies.									
		Contents: stages of scientific									
		research, terms and concepts,									
		methods of conducting an									
		experiment, mathematical methods									
		of processing research results.									
		Concepts of engineering, laboratory									
		and industrial experiment, bench									
		research									
		Purpose: formation of ecological	5		V						
		knowledge and consciousness,									
		obtaining theoretical and practical									
		knowledge on modern methods of									
11	Ecology and life safety	rational use of natural resources and									
		environmental protection.									
		Contents: the study of the tasks of									
		ecology as a science, the laws of									
		the functioning of natural systems									
		and aspects of environmental safety									

		in working conditions,											
		environmental monitoring and											
		management in the field of its											
		safety, ways to solve environmental											
		problems; life safety in the											
		technosphere, emergencies of a											
		natural and man-made nature.	~					-					
		Purpose: formation of financial	5	V		V							
		literacy of students on the basis of											
		building a direct link between the											
		acquired knowledge and their											
		practical application.											
		Contents: using in practice all kinds											
		of tools in the field of financial											
12	Basics of Financial	management, saving and increasing											
1.2	Literacy	savings, competent budget											
		planning, obtaining practical skills											
		in calculating, paying taxes and											
		correctly filling out tax reports,											
		analyzing financial information,											
		orienting in financial products to											
		choose adequate investment											
		strategies											
			e of basic										
	T		versity c	ompo	nent					1	1 1	-	
		Purpose: to introduce students to	5		V								
		the fundamental concepts of linear											
		algebra, analytical geometry and											
		mathematical analysis. To form the											
13	Mathematics I	ability to solve typical and applied											
		problems of the discipline.											
		Contents_ Elements of linear											
		algebra, vector algebra and											
		analytical geometry. Introduction to								<u> </u>			

		the analysis. Differential calculus of								
		a function of one variable. The								
		study of functions using								
		derivatives. Functions of several								
		variables. Partial derivatives. The								
		extremum of a function of two								
		variables								
		Purpose:To form ideas about the								
		modern physical picture of the								
		world and scientific worldview, the								
		ability to use knowledge of								
		fundamental laws, theories of								
		classical and modern physics.								
14	Physics	Contents_ physical fundamentals of	5	V						
		mechanics, fundamentals of								
		molecular physics and								
		thermodynamics, electricity and								
		magnetism, vibrations and waves,								
		optics and fundamentals of								
		quantum physics.								
		Purpose: To teach students	5	V						
		integration methods. To teach you								
		how to choose the right method for								
		finding the primitive. To teach how								
		to apply a certain integral to solve								
		practical problems. Contents_								
1.5	Mathematics II	integral calculus of the function of								
15	Mathematics II	one and two variables, series								
		theory. Indefinite integrals,								
		methods of their calculation.								
		Certain integrals and applications								
		of certain integrals. Improper								
		integrals. Theory of numerical and								
		functional series, Taylor and								

		3.6.1.1.1.0						1				
		Maclaurin series, application of										
		series to approximate calculations										
		Purpose: To develop students'	5			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ſ		V			
		knowledge of drawing construction										
		and skills in developing graphical										
		and textual design documentation										
		in accordance with standards.										
		Content: Students will study ESKD										
		standards, graphic primitives,										
	Engineering and	geometric constructions, methods										
16	computer graphics	and properties of orthogonal										
	compater grapmes	projection, Monge's projection,										
		axonometric projections, metric										
		tasks, types and features of										
		connections, creating part sketches										
		and assembly drawings, detailing,										
		and creating complex 3D solid										
		objects in AutoCAD										
		3	4									
		The purpose of studying the	4			V				V		
		discipline is to form students'										
		understanding of the basics of										
		mining and metallurgical and oil										
		and gas production, extraction,										
		processing and transportation of										
		minerals, machinery and equipment										
17	Fundamentals of the	used in the mining and										
1	specialty	metallurgical and oil and gas										
		industry. During the study, students										
		will be introduced to the										
		technological processes and the										
		main equipment of the mining and										
		metallurgical and oil and gas										
		industries, the main methods of										
		maintenance, the principles of										

		prodictive analytics of equipment				1				
		predictive analytics of equipment The main issues and methods for	5							
			3	V					V	
		obtaining, converting, transferring								
		and using thermal energy, the								
		fundamental principles of operation								
		and schemes of heat engineering								
		installations, to teach how to								
	Thermodynamics, heat	evaluate and compare the energy								
18	transfer and thermal	and economic indicators of heat								
	engineering installations	power plants, to effectively use the								
		means of production in								
		technological processes. The study								
		of the physical foundations,								
		devices, principle of operation and								
		technical characteristics of the main								
		and auxiliary heat and power								
		equipment and systems								
		To involve students in the	5						V	V
		development and solution of tasks								
		that help bridge the gap between								
		scientific theory and engineering								
		practice. Contents Theoretical								
		mechanics, theory of mechanisms and machines. Theoretical								
	The sent of selection 1									
19	Mechanics	mechanics deals with the general laws of mechanical movements of								
	Mechanics	material bodies and the mechanical								
		interactions between them. In the								
		theory of mechanisms and								
		machines, general methods of								
		research, construction, and								
		kinematics of mechanisms and								
		machines are studied								

	T		1	1							
20	Basics of hydraulics and hydraulic drives of technological machines	calculation of various hydraulic	5							v	V
21	Strength of materials	Purpose: To teach students integration methods. To teach you how to choose the right method for finding the primitive. Stretching and compression. Pressure in sections and deformations of a direct core. Mechanical properties of materials at a stretching and com-pression. Calculation on durability and rigidity at a stretching-compression. Geometrical charac-teristics of flat sections. Shift and torsion. Calculation on durability and rigidity at torsion. A bend. Normal and tangents of a pressure at a bend. Calculation on durability at a bend. The theory of the intense and deformed conditions. A hypothesis of a limiting condition. Complex resistance. Stability of balance of deformable systems. Dynamic								v	V

		loading							
22		Studying the basic laws and concepts of standardization and interchangeability, methods and means of controlling deviations of the shape, roughness and waviness of the surfaces of parts, the role of standardization in improving the quality of machines Interchangeability binds in a single whole design, production technology and control products. Standardization and unification of parts and elements contribute to the acceleration and cheapening of the design and manufacture of products	5			V			
23	Construction materials processing machinery and equipment	The solution of the most important technical problems associated with the creation and development of the most economical materials, increasing the accuracy, reliability and performance of mechanisms and devices depends largely on the development of materials science and technology for producing and processing materials, concretization of knowledge about the relationship between the composition, structure and properties of materials used for management of the structure and properties of structural materials	5		v				v
24	Intellectual data analys	The discipline "Intelligent Data Analysis" helps to form ideas about the types of problems arising in the	5			v	V		

		field of Data Mining and methods of their solution that will help students to identify, formalize and successfully solve practical problems of data analysis, develop theoretical knowledge, practical skills on the application of modern methods of data mining in various spheres of human activity							
25	Bases of designing and details of cars	Purpose: to acquire knowledge of calculations and design of machine parts and assemblies, taking into account the criteria of strength, reliability and stability.Contents_general principles of design and construction, construction of models and calculation algorithms for standard machine parts taking into account performance criteria, fundamentals of theory and methodology for calculating standard machine parts, computer technologies for designing assemblies and machine parts. Basic requirements for machine parts and assemblies	5				V		v
26	Electrotechnics and microelectronics	Electrical and magnetic circuits. Basic definitions, parameters and methods of calculation of DC electrical circuits. Analysis and calculation of linear AC circuits. Analysis and calculation of electrical circuits with nonlinear elements. Analysis and calculation	5					V	

				ı	- 1		 1			ı	
		of magnetic circuits.									1 1
		Electromagnetic devices and									ĺ
		electrical machines. Fundamentals									
		of electronics and electrical									ĺ
		measurements. The element base of									ĺ
		modern electronic devices.									ĺ
		Semiconductor elements. Electronic									ĺ
		equipment power supply devices.									ĺ
		Amplifiers of electrical signals.									ĺ
		Electronic amplifiers and									ĺ
		generators. Elements of pulse									ĺ
		technology. Pulse and auto-									ĺ
		generator devices. Fundamentals of									ĺ
		digital and microelectronics.									1
		Microprocessor tools									ĺ
		Purpose: to familiarize students	5			v					
		with the basic concepts, methods	3								1
		and technologies in the field of									ĺ
		artificial intelligence: machine									ĺ
		learning, computer vision, natural									ĺ
		language processing, etc.									ĺ
		Contents: general definition of									ĺ
											ĺ
	Fundamentals of	artificial intelligence, intelligent									ĺ
27		agents, information retrieval and									ĺ
	Artificial Intelligence	state space exploration, logical									ĺ
		agents, architecture of artificial									ĺ
		intelligence systems, expert									ĺ
		systems, observational learning,									ĺ
		statistical learning methods,									ĺ
		probabilistic processing of									i I
		linguistic information, semantic									<u> </u>
		models, natural language									i I
		processing systems									i l

28	Algorithmization and programming basics	The course explores the fundamental concepts of programming: operator, variable, procedure, function, data type. The main structures of algorithms are considered, such as linear, branched, cyclic. The course examines the basic forms of data representation: strings, structures, arrays, lists. Separate topics are devoted to the creation of widely used sorting algorithms, searching for the minimum and maximum values in an array, string processing, iterative and recursive algorithms, building flowcharts of algorithms and developing	4			V				
29	The dynamics and durability of technological machines	programs based on them Students study the criteria for calculating technological machines and structures for strength. To learn the formulation and analysis of calculation results, the ability to determine operating stresses, to master a number of accurate and approximate methods for determining the characteristics of operational loads, considering the bearing capacity of parts and structures as a random variable, to be able to calculate dynamic loads in drives and other parts of technological machines	4						V	V

30	Technology of manufacturing technological machines	Mastering the discipline is based on the study of the methodology for calculating the economic efficiency of the method of obtaining blanks, normalizing operations; application of operations design methodology; methods for calculating the minimum allowances, cutting conditions, the required amount of technological equipment, methods for ensuring the specified accuracy of manufacturing parts, technological processes for the production of standard parts and assemblies of machines and equipment				V				V	
31	Technical diagnostics of technological machines	The course is aimed at studying the theoretical foundations of technical diagnostics and obtaining practical skills in the use of non-destructive testing methods to assess the technical condition of technological machines and equipment; to familiarize students with the basics of the theory of technical diagnostics, types of technical condition, controlled parameters, technical diagnostics systems; to study the physical foundations of non-destructive testing methods for detecting and diagnosing malfunctions of technological equipment; familiarization with equipment for non-destructive	4						v	V	

	T		I	1	ı		ı		ı			I	ı	1
		testing, test methods, acquisition of												
		practical skills												
		Objective: to study the key aspects	5						V	V				
		of protecting information systems												
		and networks from various types of												
		threats, including attacks on												
		software, malware, phishing,												
		insider threats and others. Contents:												
32	Basics of cybersecurity	Introduction. Principles of												
32	Basies of cybersecurity	cybersecurity. Data encryption.												
		Access control. Security audit.												
		Developing security policies and												
		responding to incidents. Legal and												
		ethical aspects in the field of												
		cybersecurity regulating the use of												
		information technologies												
		The purpose of studying the	5							V	V			
		discipline is to acquire the primary												
		skills necessary for studying system												
		programming and operating system												
		administration, including the skills												
		of configuring and analyzing												
		operating systems. Special attention												
33	Operating systems	will be paid to the three main												
33	Operating systems	subsystems of operating systems:												
		process management (processes,												
		threads, CPU scheduling,												
		synchronization and deadlocks),												
		memory management												
		(segmentation, pagination, paging),												
		file systems and operating system												
		support for												
2.4	Object oriented	The course covers topics such as:	5					V		v				
34	programming	the paradigm of object-oriented												

		programming; classes and objects; principles of creating scalable software using a high-level method for designing business environment concepts in a programming language; programming languages C++, Java and C#; principles of										
		abstractions, encapsulation, inheritance, polymorphism; software design patterns; practical										
		skills in creating software products										
			of basic	discip	olines	 I	1	1	<u> </u>			
	T		nponent	of cho	oice	 	_			T		
35	Oil and gas production technologies	Students study the basics of well construction technology, oil and gas production. Acquisition of skills for competent choice of the method of opening productive objects, designing the design of wells, choosing methods for influencing the productive formation, calculating the modes of operation of the "well-formation" system. The study of techniques and technologies used in the oil and gas industry, methods of construction and operation of wells, collection and preparation for transportation of oil and gas in the fields, underground gas storage. Acquisition of skills in calculating wells, the need for materials for the preparation of drilling fluid, drilling	5				V					

		properties of oil and gas, gas well flow rates								
36	Mining technologies	The aim of the course is to contribute to the development of scientific and technical thinking and the acquisition by students of the necessary knowledge and practical skills in the field of technology of stripping and mining operations in open development Objectives of the course: study of the level of mining and the need for them in the national economy, information about mineral deposits and the condition of their occurrence; familiarization with the methods of mining and prospects for their development; the essence of underground mining and the main mine workings; the main production processes and technical and economic indicators of mines; methods of opening and systems development of mineral deposits; basic technological processes			V					
37	Technologies of metallurgical production	The purpose of teaching the discipline is to give students indepth knowledge about the basic theoretical and technological provisions of the production of ferrous and non-ferrous metals; the ability to solve complex technological problems; to have the skills of independent work on the	5		v					

		1	1	1		1	1	1		I	1	
		organization and management of										
		experimental studies of										
		technological processes at existing										
		metallurgical units and promising										
		experimental and pilot industrial										
		complexes.										
		The objectives of studying the										
		discipline are to master the general										
		laws of processes occurring in										
		ferrous and non-ferrous metallurgy										
		units; to master methods for										
		calculating the charge, material and										
		thermal balances of the process,										
		intensification of technological										
		processes and control of melting; to										
		get acquainted with promising										
		technologies in metallurgy,										
		including hydrometallurgy										
		Purpose: the goal is for students to	5	v	v							
		master the theoretical foundations										
		and practical skills in the field of										
		sustainable development and ESG,										
		as well as to develop an										
		understanding of the role of these										
		aspects in the modern economic and										
	Fundamentals of	social development of Kazakhstan										
38	sustainable development	Contents: introduces the principles										
	and ESG projects in	of sustainable development and the										
	Kazakhstan	implementation of ESG practices in										
		Kazakhstan, includes the study of										
		national and international standards,										
		analysis of successful ESG projects										
		1 5										
		\mathcal{E}										
		implementation in enterprises and										
		organizations										

		· ·	of profile	-						
39	_	The acquisition by students of theoretical knowledge and practical skills on the basics of designing technological processes for the repair and restoration of worn parts, assembly units, machines and equipment; Determination of optimal modes of performance of production processes; quality control of repair of machines and equipment. Organization and engineering support of high-quality installation of equipment, methods of mechanization and automation of technological processes and rules for safe work	5					Y		
40	Instrumentation and automation of technological machines	Formation of the future specialist knowledge of the design of devices, their purpose and principles of operation. As well as special training of engineering and technical personnel with scientific and practical knowledge in the field of operation, as it solves relevant engineering and scientific problems in the field of quality, performance properties and rational use of fuels, oils, lubricants and technical fluids				<i>r</i>		Y		
41	Fundamentals of reliability of technological machines	The course provides students with knowledge and skills that provide a creative approach to solving problems of reliability and	5		1	r		V		V

		durability of technological machines and equipment necessary to increase the level of automation, reduce huge repair costs from machine downtime, and ensure safety during equipment operation. When studying disciplines, students master the issues of ensuring the reliability and durability of technological equipment; principles of rational use of technical parameters of technological machines										
42	Geomonitoring of the technical condition of technological machines	Formation of future specialist knowledge on the design of diagnostic devices, their purpose and principles of operation directly at the place of production work, the use of devices for their intended purpose, assessment of the state of equipment, as well as special training of engineering and technical personnel with scientific and practical knowledge in the field of operation, t .To. it solves topical engineering, technical and scientific problems in the field of quality, operational properties and rational use of these devices			V					v		
43	Application design patterns	The course is aimed at studying the main design patterns and the canonical library of typical design patterns. Discusses specific problems and common design	5			\	•	V				

		errors that developers face when writing code. The course covers information about how to decompose an application into layers, approaches to organizing business logic, the use and main aspects of the implementation of each solution under consideration, supported by examples of UML diagrams and source code.									
44	Database Systems	Different types of data storage during creation of ecologically safe chemical and biochemical productions are considered, algorithms of the organization of effective access to data, differentiations of access rights to data are considered. A practical and theoretical part of a course puts the main emphasis on relational model of data and the SQL language for the solution of professional tasks and the complete description of schemes and processes of biotechnology and chemical engineering in terms of technological safety	5			v		v			
45	Microprocessor-based systems in the control systems	This course is intended for students to build distributed and concentrated control systems, principles of building industrial controllers, programming tools and programming languages of industrial controllers. As a result of	5						v		

		mastering the discipline, the student								
		will be able to develop software for								
		industrial controllers using modern								
		development tools and								
		programming languages								
		This course is intended for students	5					v		
		to study the principles of building								
		software and hardware complexes								
		(STC), choosing hardware, learning								
		the principles of building and								
		choosing SCADA systems when								
		solving problems of automation of								
		technological processes and								
		industries. As a result of mastering								
46	SCADA-system	the discipline, the student will be								
		able to develop a justification and								
		choice of automated tasks, to make								
		the most appropriate choice of								
		hardware and software. The study								
		of the SCADA-system gives a								
		visual representation of the process								
		and provides, as a rule, a graphical								
		interface to the operator for								
		monitoring and control								
		Objective: to form the students'	6		v		v			
		knowledge system in the theory and								
	Algorithm for	practice of application of								
	diagnosing and	productive technologies. Data								
477	predicting machine	monitoring, equipment condition								
47	failures based on	diagnostics and failure prediction,								
	artificial intelligence and									
	IoT technology	maintenance planning. Content:								
		within the framework of the course								
		students will learn the basics of								

		1 1 1 1						Т					ı	
		knowledge about technical means												
		of obtaining information about the												
		state of machines, systems of data												
		collection, analysis and storage;												
		formation of knowledge and skills												
		of application of artificial												
		intelligence IoT technology for												
		diagnostics and prediction of												
		residual life of machines												
		Goal: to develop a system of	6				\mathbf{v}				v		V	
		knowledge among students in the												
		field of theory and practice of using												
		predictive technologies in the												
		maintenance and repair of												
		technological equipment. Contents:												
		as part of the course, students will												
	Software platforms and	master the basics of knowledge												
48	technical systems for	about technical means of obtaining												
	predictive analytics	information about the condition of												
		machines, collection systems,												
		familiarization and acquisition of												
		knowledge about the architecture of												
		software and hardware systems, the												
		training core of the system, the												
		database and their integration with												
		process control systems												
			of profil	e disc	iplines	5			•	•				
		Con	mponent	of cho	oice									
	Technologies of	Goal: to develop a system of	5				V					v		
	predictive analytics in	knowledge among students in the												
49	the organization of	field of theory and practice of using												
49	maintenance and repair	predictive technologies in the												
	of oil and gas machinery	maintenance and repair of												
	and equipment	technological equipment and												

		systems in oil and gas production. Contents: as part of the course, students will master the basics of using information technologies (control systems - SCADA) and knowledge of using the capabilities of big data analysis, artificial intelligence, Internet of things, cloud services in predictive analytics technology								
50	Technologies of predictive analytics in the organization of maintenance and repair of mining machines and equipment	Goal: to develop a system of knowledge among students in the field of theory and practice of using predictive technologies in the maintenance and repair of technological equipment and systems in mining. Contents: as part of the course, students will master the basics of using information technologies (control systems - SCADA) and knowledge of using the capabilities of big data analysis, artificial intelligence, Internet of things, cloud services in predictive analytics technology	5		V			v		
51	. Technologies of predictive analytics in the organization of maintenance and repair of metallurgical machines and equipment	Goal: to develop a system of knowledge among students in the field of theory and practice of using predictive technologies in the maintenance and repair of technological equipment and systems in metallurgical production. Contents: as part of the course,	5		V			v		v

				, .		 					
		students will master the basics of									
		using information technologies									
		(control systems - SCADA) and									
		knowledge of using the capabilities									
		of big data analysis, artificial									
		intelligence, Internet of things,									
		cloud services in predictive									
		analytics technology									
		The purpose of the discipline is to	5			V					
		develop future engineers'									
		competencies in the development,									
		design and implementation of									
		technical solutions that take into									
		account the principles of inclusive									
		engineering and accessibility. The									
		discipline includes the study of the									
		fundamentals of inclusive									
52	Inclusive engineering	engineering: universal design and									
32	technologies	accessibility of engineering									
		solutions, ethical and social aspects									
		of inclusive engineering. Design of									
		technical solutions with inclusion in									
		mind, implementation of VR/AR									
		simulations for modeling inclusive									
		engineering systems. Students will									
		acquire skills in applying modern									
		technologies to create affordable									
		solutions.									1

5. Curriculum of educational program

NON-PROFIT JOINT STOCK COMPANY "KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY NAMED AFTER K.L. SATBAYEV"

«APPROVED»
Dechion of the Academic Council
NPJSC «KazNRTU
named after K.Satbayevsdated 06.03.2025 Minutes Nh 10

WORKING CURRICULUM

Academic year

Group of educational programs

Educational program

Educational program

The awarded academic degree

Form and duration of study

1025-2026 (Autumn, Spring)

B057 - "Information technologies"

B057 - "Information technologies"

B05108 - "Digital menitoring of machines and equipment"

Bachelor of information and communications technologies

full time - 4 years

				Total		lek/lab/pr	in hours		Allo	catlo				rainin; esters	g base	d on	
Discipline code	Name of disciplines	Block	Cycle	ECTS	Total hours	Contact	SIS (Including	Form of control	1 co	une	2 co	urse	3 cc	urse	4 cor	urse	Prerequisites
code				credits	nours	hours	TSIS)	control	1	2	3	4	5	6	7	8	
\vdash									sem	sem	sem	sem	sem	sem	sem	sem	
	CYCLE OF						ES (GED)										
<u> </u>		М		f langu:	ige traii	ning						_					
LNG108	Foreign language		GED, RC	5	150	0/0/45	105	Е	5							Ш	
LNG104	Kazakh (russian) language		GED, RC	5	150	0/0/45	105	E	5								
LNG108	Foreign language		GED, RC	5	150	0/0/45	105	Е		5							
LNG104	Kazakh (russisn) lenguage		GED, RC	5	150	0/0/45	105	E		5							
\bot		M	fodule (f physic	cal train	ing											
KFK101	Physical culture I		GED, RC	2	60	0/0/30	30	Е	2								
KFK102	Physical culture II		GED, RC	2	60	0/0/30	30	ш		2							
KFK103	Physical culture III		GED, RC	2	60	0/0/30	30	Е			2						
KFK104	Physical culture IV		GED, RC	2	60	0/0/30	30	ш				2					
		Modu	ale of it	format	ion tech	nology											
CSB677	Information and communication technology		GED, RC	5	150	30/15/0	105	Е				5					
		Modul	e of soc	io-cultu	ral deve	dopment											
HUM137	History of Kazakhstan		GED, RC	5	150	15/0/30	105	GE	5								
HUM132	Philosophy		GED, RC	5	150	15/0/30	105	ш			5						
HUM120	Module of socio-political knowledge (sociology, political science)		GED, RC	3	90	15/0/15	60	Е			3						
HUM134	Module of socio-political knowledge (cultural studies, psychology)		GED, RC	5	150	30/0/15	105	ш				5					
		Module	e of soc	io-cultu	ral deve	elopment											
HUM136	Fundamentals of anti-corruption culture and law	1	GED, CCH	5	150	30/0/15	105	Е			5						
MNG489	Fundamentals of economics and entrepreneurship	1	GED, CCH	5	150	30/0/15	105	ш			5						
MSM500	Fundamentals of scientific research methods	1	GED, CCH	5	150	30/0/15	105	ш			5						
MNG564	Basics of Financial Literacy	1	GED, CCH	5	150	30/0/15	105	ш			5						
CHE656	Ecology and life safety	1	GED, CCH	5	150	30/0/15	105	ш			5						
		YCLE	OF BA	SIC DI	SCIPLI	NES (BD))										
	Med	tule of p	physica	l and m	athema	tical train	ning										
MAT101	Mathematics I		BD, UC	5	150	15/0/30	105	Е	5								

MAT102	Mathematics II		BD, UC	5	150	15/0/30	105	Е		5							MAT101
PHY468	Physics		BD, UC	5	150	15/15/15	105	Е		5	Г						
		-	Module	of basi	c traini	ng			_	_	_	_	_			_	
GEN429	Engineering and computer graphics		BD, UC	5	150	15/0/30	105	Е	5								
TEC606	Fundamentals of the specialty		BD, UC	4	120	30/0/15	75	Е	4								
TEC460	Construction materials processing machinery and equipment		BD, UC	5	150	30/15/0	105	Е		5							
AAP179	Training Practice		BD, UC	2				R		2							
TEC577	Thermodynamics, heat transfer and thermal engineering installations		BD, UC	5	150	30/0/15	105	Е			5						
GEN411	Theoretical and applied mechanics		BD, UC	5	150	30/15/0	105	Е			5						
TBC463	Interchangeability, standardization and technical measurements		BD, UC	5	150	30/0/15	105	Е			5						
GEN443	Strength of materials		BD, UC	6	180	30/15/15	120	E				6					
GEN125	Bases of designing and details of cars		BD, UC	5	150	15/15/15	105	Е				5					
PED189	Technology of manufacturing technological machines		BD, UC	5	150	30/0/15	105	Е				5					
TBC461	Basics of hydraulics and hydraulic drives of technological machines		BD, UC	5	150	30/0/15	105	Е					5				
ELC103	Electrotechnics and microelectronics		BD, UC	5	150	30/15/0	105	Е					5				PHY112
CSE554	Algorithmization and programming basics		BD, UC	4	120	15/15/15	75	Е					4				
TBC555	The dynamics and durability of technological machines		BD, UC	4	120	30/0/15	75	Е					4				
TEC583	Oil and gas production technologies	1	BD, OCH	5	150	30/0/15	105	Е					5				
TEC584	Mining technologies	1	BD, CCH	5	150	30/0/15	105	Е					5				
TEC585	Technologies of metallurgical production	1	BD, CCH	5	150	30/0/15	105	Е					5				
MNG563	Fundamentals of sustainable development and ESG projects in Kazakhstan	1	BD, OCH BD,	5	150	30/0/15	105	Е					5				
MCH533	Inclusive engineering technologies	1	CCH BD,	5	150	30/0/15	105	Е					5				
TEC607	Technical diagnostics of technological machines		UC BD,	4	120	30/0/15	75	Е						4			
CSE524	Basics of cybersecurity		UC BD,	5	150	15/15/15	105	Е						5			
CSE681	Operating systems		UC BD,	5	150	15/15/15	105	Е						5			CSE624 CSE164,
CSE127	Object oriented programming		UC BD,	5	150	15/15/15	105	Е						5			MAT101
CSE831	Fundamentals of Artificial Intelligence		UC BD,	5	150	15/0/30	105	Е							5		
CSE525	Intellectual data analys	Mo	UC	professi	150 lonal ac	15/15/15 tivity	105	E							5		
AAP143	Industrial internship I	0	BD, UC	2				R				2					
CSE679	Dutabases		BD, UC	5	150	15/15/15	105	Е							5		CSE155
		CLE)FILE I	ISCIPI	LINES (PI	D)	<u> </u>								ш	
				professi			-/										
PED193	Instrumentation and automation of technological machines	0	PD, UC	5	150	30/0/15	105	Е		Γ	Γ		5				PED190
TEC587	Fundamentals of reliability of technological machines		PD, UC	5	150	30/0/15	105	Е						5			
CSB695	Application design patterns		PD, UC	5	150	15/15/15	105	Е						5			
	1								_	_	_					ш	

AAP183	Production practice II		PD, UC	3				R						3			
TBC586	Installation and repair of technological machines		PD, UC	5	150	30/0/15	105	Е							5		
AUT422	Microprocessor-based systems in the control systems		PD, UC	5	150	30/15/0	105	Е							5		
AUT402	SCADA-system		PD, UC	5	150	30/15/0	105	Е							5		
TEC588	Geomonitoring of the technical condition of technological machines		PD, UC	5	150	30/0/15	105	Е								5	
TBC612	Algorithm for diagnosing and predicting machine failures based on artificial intelligence and IoT technology		PD, UC	6	180	30/0/30	120	ш								6	
TEC613	Software platforms and technical systems for predictive analytics		PD, UC	6	180	30/0/30	120	ш								6	
TEC610	Technologies of predictive analytics in the organization of maintenance and repair of oil and gas machinery and equipment	1	PD, CCH	5	150	30/0/15	105	Е								5	
TEC609	Technologies of predictive analytics in the organization of maintenance and repair of mining machines and equipment	1	PD, CCH	5	150	30/0/15	105	Е								5	
TBC611	Technologies of predictive analytics in the organization of maintenance and repair of metallurgical machines and equipment	1	PD, CCH	5	150	30/0/15	105	ш								5	
		N	fodule	of final	attestat	ion											
BCA103	Final examination		FA	8												8	
		Addi	tional t	ype of t	raining	(ATT)											
AAP500	Military training																
	Total based on UNIVE	RSITY:							31	29	30	30	28	32	30	30	
	1000 0000 00 011170								6	i0	6	0	6	60	6	0	

Number of credits for the entire period of study

Cycle code	Cycles of disciplines		Credits		
Cycar tour	Cycle of decipality	Required component (RC)	University component (UC)	Component of choice (CCH)	Total
GED	Cycle of general education disciplines	51	0	5	56
BD	Cycle of basic disciplines	0	116	5	121
PD	Cycle of profile disciplines	0	50	5	55
	Total for theoretical training:	51	166	15	232
FA	Final attentation				8
	TOTAL:				240

 $Decision \ of the \ Educational \ and \ Methodological \ Council \ of \ KazNRTU \ named \ after \ K. Satpayev. \ Minutes \ No. 3 \ dated \ 20.12.2024$

Decision of the Academic Council of the Institute. Minutes No 3 dated 19.12.2024

Signed: Governing Board member - Vice-Rector for Academic Affairs Approved:	Uskenbayeva R. K.	417 A		
Vice Provost on academic development	Kalpeyeva Z. S.		DECEMBER 1995	BENEFIE P
Head of Department - Department of Educational Program Management and Academic-Methodological Work	Zhamagaliyeva A. S.			
Director of the Institute - A.Burkithsev Institute of Energy and Mechanical Engineering	Yelemesov K			
Department Chair - Technological machines and equipment	Kaliyev B			
Representative of the Academic Committee from Employers	Shakenov A. T.			